Throughout the rich history of the United States Navy Submarine Service, there are several submarines that have become iconic and are among the first mentioned in history texts. The *Holland*, *Gato*, *Nautilus*, and *George Washington* always receive top billing when discussing submarine history and deservedly so. They were technological pathfinders or the parent of large and important classes that won wars or kept the peace. But, in the 1920’s, an entire class of submarines achieved that iconic status and came to represent the Silent Service in the minds of the public.

Designed during WWI when German U-boats were running amuck in the Atlantic, the S-class of submarines were to be our Navy’s first true ocean going attack submarines. All previous classes had been designed for harbor defense or coastal patrols and were not suited for blue water operations. The S-class, while not a true Fleet Boat as the Navy defined that term, were to be longer ranged, faster, more heavily armed, and more habitable than any previous submarine class. They wound up being too late to see action in WWI, but they began to enter the fleet just as the Roaring 20’s started. The 51 submarines of this class comprised the largest single class of submarine in the U.S. Navy until WWII, and it made up the bulk of our Navy’s submarine force during the 1920’s and 30’s. Some of the S-boats served right up to the end of WWII, an unheard of longevity for the time.

One of the accepted definitions of the word *class* is “a number of things regarded as forming a group by reason of common attributes, characteristics, or qualities.” In the Navy, a class of warships will meet this definition, but in addition the ships will also look and be outfitted in such a manner as to be nearly identical. The layman might be surprised to learn that the 51 S-class submarines were anything but a homogenous, identical group and were in fact a class in name only. The S-class was actually made up of no less than six distinct groups that were built by four different manufacturers. The Navy considered all 51 boats a single class because they were all intended to meet the same set of performance and military specifications.

Up until about 1916, the Electric Boat Company of Groton, CT. (EB) had been the defacto design agent for U.S. submarines and enjoyed a near monopoly on construction. Several factors, though, had begun to strain their relationship with the Navy. The incorporation of patented features that stunted competition, poorly performing engines built by one of their subsidiaries, and what many officers felt was undue use of political
influence led to a feeling of ill-will towards the company. In order to reduce its dependence on EB, the Navy’s Bureau of Construction and Repair wanted to have its own in-house design capability and thus designated the Portsmouth Naval Shipyard in Kittery, Maine as the Navy’s lead submarine design entity. Congressional oversight committees also felt strongly that some level of commercial competition was needed. The Navy was struggling in this period with how to design, acquire, and build submarines. It was acknowledged that the previous system of allowing the manufacturer (essentially EB) to determine military and operating characteristics and then accepting the designs that were offered was producing expensive, non-optimal boats. Thus, with the S-class the Navy’s General Board for Design took a different tack and came up with a set of characteristics that it wanted a submarine to have, and asked the various design agents to build a boat to meet the characteristics. These specifications were approximately 800-1000 tons submerged displacement, length approximately 250 ft., surface speed 18-20 knots, submerged speed 14 knots for 1 hour and 10 knots for 3 hours, surface range radius of 5000 nautical miles, and 4 bow torpedo tubes (two reloads each). Three prototypes were developed for the new 800 tonner, Portsmouth and EB submitted their designs, with a third coming from the Lake Torpedo Boat Company of Bridgeport, CT, the only civilian entity that was offering EB any level of competition up to that time.

ELECTRIC BOAT

Electric Boat’s model became the USS S-1 (SS-105). This design is sometimes referred to as the "Holland" S-boat, a reference to one of EB’s founders, inventor John Holland.

It was a single hull design, with all ballast tanks internal to the pressure hull, in essence a scaled up version of all their previous designs. The hull was a rounded spindle shape with a narrow superstructure atop it that ran ¾ of the way to the stern before the skeg tapered down to the rudder. The rudder itself was placed at the very end of the hull, in line
with the hull’s axis and aft of the twin screws. She had four 21-inch torpedo tubes forward, a prominent towing fairlead pipe at the far forward, upper end of the superstructure, and a single starboard side anchor. A squared off conning tower fairwater sat dead center on the superstructure, supporting the periscopes and radio aerials. As built, she sported a small 3-inch/23 caliber Mk 9 deck gun that partially retracted, breech end first, into a watertight tub that penetrated the superstructure forward of the fairwater and into the pressure hull over the forward battery. A circular gun shield attached to the barrel formed the watertight top of the tub. A desire to reduce drag and thereby increase underwater speed led to the adoption of this unusual gun. Lessons from German experience with larger guns were still forthcoming. Her bow planes retracted aft into the superstructure, one of the earliest examples of this feature. She was, in effect, an enlarged version of the earlier EB R-class boats. EB did not at this time have the large construction yard in Groton and thus contracted the S-1’s construction to the Fore River Shipbuilding Co. of Quincy, Massachusetts. The photo above shows her on her trial runs, with a portion of the conning tower fairwater surrounding the bridge was not yet installed, a common construction technique of the time. Note also the angular, slab-sided fairings for the bow plane pivots on the forward superstructure. Overall, the S-1 had even, well-proportioned lines. This was mostly due to the fact that alone among the three prototypes, EB split the boat’s main battery into two halves, with half forward of the control room, and half immediately aft. This was a favored feature of EB designs, which added a level of mechanical redundancy.

A fairly successful boat, the S-1 was chosen in 1926 to conduct the Navy’s first (and as it turned out, only) tests in carrying and launching an airplane from a submarine. For these experiments, she was fitted with a small, horizontally mounted cylindrical hangar aft of the fairwater. It held a single Martin MS-1 floatplane partially disassembled. In order to accommodate the hangar, and to give additional space to extract and assemble the plane, the superstructure was expanded outward on either side of the conning tower fairwater and aft towards the stern. The angle at which the skeg tapered down to the rudder was sharpened and the stern light repositioned. She was also refitted with a larger, more powerful 4-inch/50 caliber deck gun (coincidentally also designated Mk 9), necessitating the widening of the deck around the gun. This gun replaced the 3-inch/23 caliber disappearing mount that was roundly disliked by the crew as being unreliable and lacking punch, and because the gun tub took up space in the forward battery compartment.
Literally making up doctrine as they went along, normal practice for launching the aircraft was to surface the boat, open the hangar and pull the aircraft and its components out. It would then be assembled on the aft deck, manned by the pilot, and the engine started. The boat would then flood down the after group ballast tanks and the
aircraft would float off and make its take off run. Recovery would be the opposite of this procedure. The amount of time that it took for this action and the necessity of having glass calm seas showed the concept to be unworkable and it was never repeated on a U.S. submarine (although it was considered for inclusion on the later fleet boat V-4, but dropped from the design prior to construction).

LAKE TORPEDO BOAT CO.

The brilliant but eccentric Simon Lake and his Lake Torpedo Boat Company were EB’s only real competition in the years leading up to the S-boats. Lake submitted a design that became the USS S-2 (SS-106). Being a modified double hull design it was generally cylindrical in shape, but it tapered sharply upward forward and aft, giving the amidships portion a somewhat squat, almost pregnant look. The stern was a flat, horizontal “shovel” shape, a Lake trademark that provided needed buoyancy at the stern. Her rudder was mounted beneath the stern (as opposed to EB’s axial mounted rudder), and the rudder
pivot structure also supported the stern planes. To match the position of the stern planes, the propeller shafts also exited beneath the hull. The superstructure ended short of the stern. She also had a starboard side anchor and fully retractable bow planes. Her battery was situated in one compartment forward of the control room, and that had the visual effect of pushing the conning tower fairwater aft a little. Like the S-I, she conducted her initial sea trials without the bridge fairwater installed.

Initially built without a gun, she was also refitted with a 4-inch/50 caliber Mk 9 weapon. Similar to S-I, her deck around the gun mount had to be expanded outward to provide adequate space for the large gun, in this case a considerable amount. A portion of her
superstructure amidships was designed to be watertight while surfaced. This was to provide additional reserve buoyancy while surfaced, a characteristic somewhat lacking in the EB design. In the photo above, grated covers can be seen fore and aft and underneath the gun deck. These protected the Kingston flood valves for the superstructure tankage. A thorough series of sea trials after her commissioning revealed that she tended to burrow into the waves while surfaced, making for a very wet deck and bridge. Accordingly, Simon Lake designed a fix for this problem that resulted in the addition of a bow buoyancy tank external to the superstructure. This gave the S-2 a distinct look from the rest of the S-boats and was reminiscent of several British designs.
PORTSMOUTH NAVAL SHIPYARD

The Government’s design for the S-boats (sometimes called the “Bureau” design, after the Bureau of Construction & Repair) was built at Portsmouth Naval Shipyard and eventually commissioned as the USS S-3 (SS-107).

A full double hull boat, all of her main ballast tanks were contained exterior to the pressure hull. She was considerably longer (231 ft. vs. 207 ft. for S-2 and 219 ft. for S-1) and a little wider than the other two boats, giving her a long, sleek appearance. Although a unique design by Portsmouth, S-3 incorporated several Lake patents, which the chronically underfunded Lake allowed (for a nominal fee of course) thinking it would help him financially. Similar to S-2, her battery was contained in one large compartment forward of the control room, which had the visual effect of pushing her conning tower fairwater well astern. Despite this, some believe that the Government design was the most visually striking of the three, with graceful lines that are more appealing than the boxy, squared off look of the EB design. The long hull had far less curve to it than the S-1 or S-2 and the stern ended in a sharp vertical “chisel”. The rudder was underneath the stern (one of the Lake patents), but the stern planes were suspended on their own support post above the rudder.

This photo shows her on trials in May 1919. Like the other two prototypes, she ran trials without her bridge fairwater installed, and a Sailor can be seen sitting on the top of the
conning tower, a vertical watertight pressure cylinder above the control room. This was a common feature amongst all three prototypes. It contained a remote steering station and had deadlight viewports around the upper edge. A distinctive, stepped bridge fairwater was soon added; bulging far forward and hanging over what would become a ready-use ammunition locker. It also extended aft of the periscope shears.

The superstructure was quite narrow and ended far short of the stern. Like the other two prototypes, she had a starboard side anchor and fully retractable bow planes, but did not have the prominent towing fairlead pipe at the bow like the S-1. The Government design tackled the surface buoyancy issue by dividing the main ballast tanks into upper and lower halves, with the upper half having separate flood ports and Kingston valves. These can be seen as dark squares spread out evenly along the waterline in both photos above. The support shears for S-3’s two control room periscopes initially did not extend above the rest of the conning tower fairwater (compare to her sister S-4 alongside in the photo below).
The shears were eventually lengthened to match her sisters in a subsequent overhaul. A short, 10 ½ foot third periscope was installed in the conning tower. This photo of a partially submerged S-3 shows the lengthened shears and angle brackets that were installed to support the conning tower periscope. Also built without a deck gun, S-3 had a 4-inch/50 caliber Mk 9 gun added, and this necessitated the widening of the deck forward of the conning tower fairwater.

CONCLUSION

Electric Boat’s S-1 had good underwater maneuverability, was a comparatively fast diver, and her single hull construction eased exterior maintenance. However, the superstructure proved to be weakly built, especially aft. She lacked in surface buoyancy, giving her a wet deck and bridge and thus making her a less than optimal gun platform. An EB subsidiary, NELSECO, supplied the engines and these proved problematic. They were derivations of German MAN designs and the translation from German to American manufacturing exacerbated the flaws of a still developing technology. The problems were eventually worked through, but the engines were never well liked by the Navy. Despite all this, the boat had enough good qualities to warrant series production and ultimately EB S-boats gave yeoman service during WWII.
In the summer of 1927 the aircraft trials were completed and the concept was shown to be unworkable. The hangar was removed and the S-1 returned to normal duties. However, she retained the expanded superstructure and this gave her a look distinct from the other EB design S-boats. These two photos were taken at the Boston Navy Yard in May 1930. They give a good overview of the S-1 after the hangar was removed. The towing fairlead hawse pipe at the very bow is a prominent feature of the EB design and is not repeated on the Government boats. The slab sided covers for the bow plane rigging and operating mechanism are quite apparent here. This design was repeated for the follow on 20 series (S-18 to 29, except S-19) boats, but by the 30 series (S-30 to 41) it had become rounded and less conspicuous.

S-1 served well until 1937 when she was decommissioned and laid up in Philadelphia. She was re-commissioned in 1940 and eventually transferred to the Royal Navy and renamed the HMS P.552. She served until the end of the war and was scrapped in 1945.
The S-1 and the follow on production boats (S-18 to 47) proved to be the last single hull axial design built by EB. A dearth of submarine construction between 1925 and 1930 very nearly put EB out of business. When they returned to the fold, the Navy had completely altered its submarine acquisition process and now dictated the design elements to a very high degree. EB jumped back into the business with the construction of the USS Cuttlefish (SS-171) in 1931 and quickly regained its reputation as the nation’s premier civilian submarine builder.

Simon Lake’s S-2 had her share of problems and was not well liked by her crews. An inveterate tinkerer, the perfectionist Lake constantly modified the boat and thus he could not offer the Navy a “finished” design suitable for mass production. Lake’s ideas, although sound in nature, were often proved less than optimal in practice. She was a slow diver due to her partially watertight superstructure and poorly designed flooding and venting mechanisms for the main ballast tanks. Her flat top internal tanks (as opposed to EB’s patented U-shaped tanks) required more bracing and greatly reduced internal available space, making her a very cramped boat. The piping arrangement leading to the ballast tanks was overly complicated and her forward and aft trim tanks were so large that they were prone to develop a free surface effect, which adversely affected underwater control. This was Lake’s last internal design to be accepted by the Navy. No contract for any further boats of this type was awarded to Lake. After a short commissioned life of just nine years, she was decommissioned and laid up in November 1929. Two years later she was sold for scrap, un-mourned by the Navy. Lake and his company clung to life by agreeing to build Government type S-boats under license (see part two of this series), but once the last of these was delivered (S-51) the perpetually struggling Lake closed his doors for good in 1924.

The Government built S-3 fell between the EB and Lake designs in merit. It was the first wholly Government design built from the keel up at Navy yards. Three previous boats had been built at Portsmouth and Puget Sound (L-8, O-1, & O-2) but these had actually
been Lake and EB designs built under license. Thus Portsmouth’s learning curve was quite steep with the S-boats. The S-3 was a very slow diver (100 seconds to periscope depth vs. 60 seconds for the S-1) due to the divided ballast tank arrangement. Underwater maneuverability was poor, with a submerged turning radius in excess of 40% beyond the design parameters. The double hull construction proved to be difficult to maintain due to the tight spaces between the inner and outer hulls. However, S-3 exceeded the S-1 in range, and her engines (although still a headache) were considered better than S-1’s. Once again, despite the flaws, the Navy was impressed enough to order additional boats to be built at Portsmouth and by Lake. Six of the Government boats, S-11 to 15, and the heavily modified S-48 served to the end of WWII.

In the end, the Navy felt that both types were nearly evenly matched, but EB ended up with the bulk of the construction, mostly due to the much larger construction capacity they enjoyed with her contractors Union Iron Works and Fore River Shipbuilding Co.

POSTSCRIPT: THE S-1 HANGAR

The S-1’s hangar found further service in a very important role as a pathfinder. Once removed from the boat, it was acquired by Commanders Allan McCann and Charles B. “Swede” Momsen (a former commanding officer of the S-1) and used to develop a submarine rescue chamber. This was in response to the multiple sinking disasters of the O-5, S-51, and S-4, in which the inability of the Navy to rescue trapped submariners was dramatically portrayed. The hangar was cut in half and modified into two open bottomed diving bells. The intention was to lower the bell to the downed submarine, mate with a hatch, and transfer the trapped crewmen inside. The concept, although a solid one, proved unwieldy due to the open bottom of the bell. It tended to tip and fill with water. The two prototypes were extensively evaluated, with the data gathered used to develop a completely new design. A deck with a hatch divided the new chamber into dry and wet sections and it was operated by an internal winch which pulled it down to the submarine’s hatch. It also had a larger capacity than the prototype. It was perfected and put into operational use in time for the rescue of the trapped crew of the USS *Squalus* (SS-192) in 1939.

ACKNOWLEDGEMENTS

This article would not have been possible without the photographs collected and published by Michael Mohl at Navsource.org and Ric Hedman at Pigboats.com. Ric and the eminent Jim Christley also provided valuable editorial advice. I would also like to
offer my personal thanks to the late Rear Admiral Edward Ellsberg; whose 1929 book *On The Bottom* inspired me as a kid.

REFERENCES

U.S. Submarines through 1945: An Illustrated Design History, Norman Friedman, Naval Institute Press, 1995

The Dictionary of American Naval Fighting Ships, DANFS Online via Hazegray.org